Abstrakt:
Asphärische Linsen werden in einigen hochpräzisen optischen Systemen immer wichtiger. Und wie andere optische Linsen muss die Oberfläche die gleichen Qualitätsstandards in Bezug auf Oberflächenformgenauigkeit und Oberflächenrauheit erfüllen. In diesem Papier werden asphärische, weniger gründlich untersuchte Theorien der Oberflächeneigenschaften, die Berechnungsmethode der Oberflächenmerkmale asphärischer
Linsen, asphärische
Linsen Oberflächeneigenschaften und Berechnungsformeln werden angegeben, und die Eigenschaften des Oberflächenanpassungsfehlers von
asphärisch Linsen werden analysiert. Unter K9-Glas asphärisch B. optische Linse, wird die Oberflächencharakteristikfunktion ausführlich diskutiert. Die Ergebnisse zeigen, dass die Oberflächencharakteristikfunktion von asphärischen
Linsen hat eine höhere Präzision, und sein Anpassungsfehler ist besser als + 30nm
Stichwort: asphärische Oberfläche, Oberflächencharakteristik, Passungsfehler
Als wichtiges optisches Element nehmen asphärische
Linsen eine wichtige Position im optischen System ein style="color:#000000;font-family:" white-space:normal;"="">Linsen funktionieren im optischen System 3-4 mal so gut wie sphärische Linsen. Hauptsächlich aufgrund der sphärischen Aberration von asphärischen
Linsen im optischen System, wie z. B. seitliche Abweichung, Achsenabweichung und Winkelabweichung, was die Anwendung von sphärischen Linsen im
optischen System einschränkt Die asphärische Linse hat die Fähigkeit, sphärische Aberration zu eliminieren, wodurch der Einsatzbereich asphärischer Linsen im optischen System erheblich verbessert wird.
Die Erforschung von asphärischen
Linsen erfolgt hauptsächlich in zwei Aspekten: 1. Verwendung der optischen Designsoftware (wie z CODE V und ZEMAX) Design von asphärischen
Linsen, um das Problem der Lichtausbreitung zu lösen und Abbildung in der asphärischen Linse; Die Forschung konzentriert sich hauptsächlich auf den Herstellungsprozess einer asphärischen Oberfläche.
Im Ausland wurde die Oberflächenanpassung der asphärischen Oberfläche eingehend untersucht, und die Anpassungsmethode der asphärischen Oberfläche ist geringer. Hector schlug einen Kurvenalgorithmus vor, der für konische Asphären geeignet ist; basierend auf der linearen Methode der kleinsten Quadrate, schlug ZHANG einen Berechnungsalgorithmus für asphärische Parameter vor; Durch Ändern der Kegelschnittkonstantenwerte von K und Verwenden des Max-Min-Werts der Methode der kleinsten Quadrate erhält G ugsa den Oberflächenkonturstandard. Das obige Verfahren berücksichtigt nur die Oberfläche einer einzelnen Standardoberfläche. Bei der Messung der asphärischen Oberfläche am Tag wird die Schätzung der Kegelkonstante K aufgrund der unterschiedlichen Koeffizienten des Polynoms verzerrt. In dieser Arbeit wird die charakteristische Oberflächenfunktion der asphärischen Oberfläche durch theoretische Analyse ermittelt. Am Beispiel von K9-Glas wird die Oberflächenkennfunktion der asphärischen Oberfläche diskutiert und der Passungsfehler analysiert.